

Mission Architecture Study FST Presentation

September 24, 1998 Goddard Space Flight Center

Study Contributors

 Mark Skinner - S 	Study Manager
--------------------------------------	---------------

Jeremy Stober - Mission Architecture

Chris Miller - Cryogenics

Rich Reinert - Spacecraft, VESAT Study

Rich Reinker - Cryogenics

Greg Fickbohm - Cost Analyst

Bob Poley - Thermal Analyst

Arne Erikson - Structural Analyst

Steve Jordan - Engineering Management Rep.

Terry Schrepel - Launch Vehicles

Randy Rose - ASPEN Advanced S/c Arch. IRAD

Paul Lightsey - NGST Mission Arch. Study

Bill Kiehl - Technology Roadmap

Bill Deininger - Technical Review

Shanna Cox - Administrative

Study Overview - Objectives

- Create one or more mission concepts that meet overall requirements
- Identify unproven technologies, and create roadmaps
- Minimize end-to-end mission costs
- Create ROM schedules & costs for mission elements
- Scope of study excludes optics, detectors, and science operations

Using 2 Launch Vehicles Saves \$\$\$ Versus Any Other Launch Option

Number of Launch Vehicles

Launch Vehicles Near Performance Range

	Candidate Vehicle	Provider	Country of Origin	Status	P/L to GTO (kg)	P/L to L2	Shroud Cylindrical section,, L x Dia, m		
A) D	omestic Launch Vehi	cles:							
1	Atlas II ARS	Boeing/ILS	USA	Development	4500	3170	4.2 x 2.7		
2	Delta IV Medium +	Boeing	USA	Development	4500	3170 (est.)	10 x 4.6		
3	Delta IV M+ w/Solids	Boeing	USA	Development	8000	5600 (est.)	10 x 4.6		
4	Titan/Centaur SRMU	LMA	USA	Operational	N/A	8600	12 x 5		
B) Foreign Launch Vehicles									
1	GSLV Mk3	Antrix	India	Development	3500	2500 (est.)	TBD		
2	CZ-3B	CGWIC	China	Operational	4850	3400 (est.)	TBD		
3	Zenit 3 SL	Boeing/Sealaunch	International	Development	5000	3500	TBD		
4	H2A 212	NASDA/RSC	Japan	Development	5000	3500 (est.)	4.6 x 4.6		
5	Ariane 5	Arianespace	Europe	Operational	5600	4100	10 x 4.6		
6	Proton	Krunichev/ILS	Russia	Operational	N/A	4800	3.5 x 3.8		
7	Ariane 5E	Arianespace	Europe	Development	8000	5600 (est.)	10 x 4.6		

Notes:

- 1) Where applicable, P/L to L2 estimated using ratio of GTO to L2 throw weight shown for Atlas II ARS (70%)
- 2) Candidate Vehicles selected from table "Launchers of the World" in International Space Industries Report dated 6/6/98

Modified "Starting Point" **Mission Concept**

"Starting Point" Mission Concept Modified and Studied in Detail

- Six spacecraft to L2 launched on two EELV-M+ launch vehicles
- One 1.3 m SXTs & Three 0.28 m HXTs per spacecraft
- Fixed optical bench deployable dust covers and light shade
- Observatory points 90°, ±20°, to sunline
- Fixed sunshade & solar panels permit dewar cooling to ~ 60 K
- X-band communications via dedicated 10 m ground antenna
 - ~6 hours per day total at 1 Mbps
- "Unlimited" lifetime mechanical cryocooler & Advanced ADR
 - Requires technology development
- Use existing x-ray science data center & infrastructure

Evolved Mission Concept

Evolved Mission Concept

- Two spacecraft to L2 launched on two EELV-M+ launch vehicles
- Three 1.3 m SXTs & nine 0.28 m HXTs per spacecraft
- Fixed optical bench deployable dust covers and light shade
- Observatory points 90°, ±20°, to sunline
- Fixed sunshade & solar panels permit dewar cooling to ~ 60 K
- X-band communications via dedicated 10 m ground antenna
 - ~6 hours per day total at 1 Mbps
- "Unlimited" lifetime mechanical cryocooler & Advanced ADR
 - Requires technology development
- Use existing x-ray science data center & infrastructure

Key Technologies

- EELV-M launch vehicle
 - USAF Procurement; 1st launch 2001 (34 ILS launches '02-'05)
 - Large commercial market almost assures development
- Advanced Adiabatic Demagnetization Refrigerator (ADR)
 - Laboratory prototypes at SAO & NIST-boulder
 - Need development of flight model
- Cold operating cryocooler
 - Room temperature exists
- Large low-temperature, low-conductivity composite structure engineering model
 - Coupon, stress, etc., Testing at predicted temperatures
 - Trade between GFRC and gamma-alumina

Trade Summary

Ball's Modified "Starting Point" Mission Concept

Ball's Evolved Mission Concept Fits in the EELV 5m Fairing With a Fixed Optical Bench

Ball's Evolved Mission Concept Has Cold Detectors Away From Warm Optics and Bus

Three Temperature Stages are Provided

- Thermal design provides three temperature stages
- ① Sunshield: 280-300 K
 - Thermal sink for detector electronics; within 2.5 m of all instruments
- ② Thermal shield: 140-180 K
 - Thermal sink for HXTs (233 K)
- 3 Cold bulkhead: 125 K
 - Mechanical interface for all instruments
 - Thermal sink for cryocoolers and CCDs (183 K)

Performance for Three Candidate Cryogenic Systems

	Description	Lifetime	Components	Mass	Power	Technology Status
Reference Concept	4 to 6 K mechanical cryocooler; advanced ADR	10+ years	Cryocooler + dewar + ADR	90 kg	~50 W + ADR	 Two 4-10 K coolers now in development^{1,2} Advanced 4 K ADR demonstrated in lab³
Option 2	65 liters SfHe guarded with 10 K mechanical cryo-cooler; traditional ADR	5 years	Cryocooler + dewar + SfHe + ADR	110 kg	~27 W + ADR	• Two 4-10 K coolers now in development ^{1,2}
Option 3	65 liters SfHe guarded with 85 liters solid hydrogen at 10 K; traditional ADR	5 years	Dewar + SfHe + SH2 + ADR	130 kg	ADR only	• Fully developed ⁴

- 1 Creare 4-10 K turbo-Brayton cooler, funded by GSFC & Air Force Research Laboratory
- 2 Ball 10 K Stirling/J-T Cryocooler, funded by Air Force Research Laboratory
- 3 Two-pill design at NIST-Boulder, two-stage design at SAO
- 4 ADR technology demonstrated on XRS ASTRO-E, cryogenics technology on numerous programs

Technology Development Schedule

 Recommended technology development schedule fits a Constellation-X start in 2003

	1998	1999	2000		2001		01	1 20		002	
Creare 4-10 K turbo-Brayton cryocooler											
Ball 10 K Stirling/J-T cryocooler											
Stirling low-temp regenerator development											
Heat switch development											
High-Tc superconducting leads											
Two-stage/two pill ADR prototype											
						Н					
Development tasks already in progress											
Development tasks recommended for Con-X											

Next Step

- Detailed risk assessment
- Better cost estimation
 - bring in major sub-contractors as team members
 - get quotes on mission-specific hardware
 - more detailed schedule
 - more grass-roots estimation based on this schedule
 - detailed, independent review of all sub-systems
 - some modeling, for sanity check
- Cryogenics Technology Roadmap Items

- Engineering models
 - How high fidelity?
 - Mission Strategy
- Further structural design
 - lower mass, higher stiffness
- Continue monitoring of launch vehicle situation
- Better modeling of observatory
 - Structural, Thermal, ADCS
- Consider need for a focus mechanism
- Examine spacecraft charging issue
- Stray light analysis